Influence of polyelectrolyte shape on its sedimentation behavior: effect of relaxation electric field.

نویسندگان

  • Pin-Hua Yeh
  • Jyh-Ping Hsu
  • Shiojenn Tseng
چکیده

The sedimentation of an isolated, charged polyelectrolyte (PE) subjected to an applied field is modeled theoretically, taking into account the variation of its shape. In particular, the effects of double-layer relaxation, effective charge density, and strength of the induced relaxation electric field are examined. We show that the interaction of these effects yields complex and interesting sedimentation behaviors. For example, the behavior of the electric force acting on a loosely structured PE can be different from that on a compactly structured one; the former is dominated mainly by the convective fluid flow. For thick double layers, electric force has a local maximum as the Reynolds number varies, but tends to increase monotonically with increasing Reynolds number if the layer is thin. The drag factor is found to behave differently from literature results. The shape of a PE significantly influences its sedimentation behavior by affecting the amount of counterions attracted to its interior and the associated local electric field. Interestingly, a more stretched PE has a higher effective charge density but experiences a weaker electric force.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Cell Size and Shape on Electric Field Threshold and Critical Transmembrane Voltage for Electroporation

Introduction:  Electroporation  is  a  technique  for  increasing  the  permeability  of  the  cell  membrane  to  otherwise  non-permeate  molecules  due  to  an  external  electric  field.  This  permeability  enhancement  is  detectable if the induced transmembrane voltage becomes greater than a critical value which depends on the  pulse  strength  threshold.  In  this  study,  the  variabil...

متن کامل

Study of leaky dielectric droplet behavior under an electric field: effect of viscosity and electric conductivity ratios

In this research, hydrodynamic behavior of a leaky dielectric droplet under an electric field is simulated. The level set method is used for interface tracking and the ghost fluid method is used for modeling discontinuous quantities at interface. Using Taylor’s leaky dielectric model, electric field and electric force at the interface is calculated. Simulation results show the droplet deformati...

متن کامل

Dielectric relaxation and pinning phenomenon of (Sr,Pb)TiO3 ceramics for dielectric tunable device application

The behavior of ferroelectric domain under applied electric field is very sensitive to point defects, which can lead to high temperature dielectric relaxation behaviors. In this work, the phases, dielectric properties and ferroelectric switching behavior of strontium lead titanate ceramics were investigated. The structural characterization is confirmed by X-ray diffraction. The high dielectric ...

متن کامل

Unfolding collapsed polyelectrolytes in alternating-current electric fields

We investigate the unfolding of single polyelectrolyte (PE) chains collapsed by trivalent salt under the action of alternating-current (AC) electric fields through computer simulations and theoretical scaling. The results show that a collapsed chain can be unfolded by an AC field when the field strength exceeds the direct-current (DC) threshold and the frequency is below a critical value, corre...

متن کامل

CFD Investigation of Gravitational Sedimentation Effect on Heat Transfer of a Nano-Ferrofluid

In the present attempt, flow behavior and thermal convection of one type of nanofluids in a disc geometry was investigated using Computational Fluid Dynamics (CFD). Influence of gravity induced sedimentation also has been studied. The commercial software, Fluent 6.2, has been employed to solve the governing equations. A user defined function was added to apply a uniform external ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 10 44  شماره 

صفحات  -

تاریخ انتشار 2014